🪅 Percobaan Getaran Benda Oleh Pegas

Jadibenda-benda elastis tersebut memiliki batas elastisitas. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan. PertanyaanSebuah pegas dengan konstanta gaya 10 N/mmelakukan getaran harmonis, massa benda pada pegas 200 gram, apabila simpangan maksimum dari getaran tersebut 10 cm, tentukanlah kecepatan dari getaran saat simpangan benda 5 cm!Sebuah pegas dengan konstanta gaya 10 N/m melakukan getaran harmonis, massa benda pada pegas 200 gram, apabila simpangan maksimum dari getaran tersebut 10 cm, tentukanlah kecepatan dari getaran saat simpangan benda 5 cm!Jawabankecepatan getaran pegas saat simpangan 5cm adalah 0,61m/ getaran pegas saat simpangan 5cm adalah 0,61 m/ Ditanya v 2 ... ? Penyelesaian Keadaan 1 merupakan keadaan pegas berada dititik simpangan maksimum. Pada titik ini, kecepatan benda bernilai nol. Berdasarkan hukum kekekalan energi mekanik, berlaku E k 1 ​ + E p 1 ​ 0 + 2 1 ​ ⋅ k ⋅ x 1 2 ​ 0 + 2 1 ​ ⋅ 10 ⋅ 0 , 1 2 0 , 05 v 2 ​ v 2 ​ ​ = = = = = = ​ E k 2 ​ + E p 2 ​ 2 1 ​ ⋅ m ⋅ v 2 2 ​ + 2 1 ​ ⋅ k ⋅ x 2 2 ​ 2 1 ​ ⋅ 0 , 2 ⋅ v 2 2 ​ + 2 1 ​ ⋅ 10 ⋅ 0 , 05 2 0 , 1 ⋅ v 2 2 ​ + 0 , 0125 0 , 1 0 , 05 − 0 , 0125 ​ ​ 0 , 61 m / s ​ Jadi kecepatan getaran pegas saat simpangan 5cm adalah 0,61m/ Ditanya v2 ... ? Penyelesaian Keadaan 1 merupakan keadaan pegas berada dititik simpangan maksimum. Pada titik ini, kecepatan benda bernilai nol. Berdasarkan hukum kekekalan energi mekanik, berlaku Jadi kecepatan getaran pegas saat simpangan 5cm adalah 0,61 m/s. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!168Yuk, beri rating untuk berterima kasih pada penjawab soal!
Langkahkerja Percobaan 2 : 1. Seperti lagkah percobaan 1, langkah 1, 2, 3, dan 4 2. Menyimpangkan beban kebawah 2 cm lalu lepaskan 3. Mengukur waktu dalam 10 x getaran dengan stopwatch catat hasilnya pada tabel 4. Mengulangi langkah 2 dan 3 dengan beban yang sesuai percobaan 1 BAB IV HASIL DAN PEMBAHASAN A. Hasil Percobaan 1 Percobaan 2
Rabu, 11 Desember 2019 Edit Laporan Percobaan Gaya Pegas 1. Alat dan Bahan a. Karet gelang b. Penggaris c. Beban 20 gr d. Statif 2. Cara kerja a. Ambil seutas karet gelang, gantungkan salah satu ujungnya pada statif b. Gantungkan pula beban pada ujung karet c. Tariklah beban kebawah, kemudian lepaskan. Amati apa yang terjadi 3. Teori Dasar Gaya pegas adalah gaya yang timbul karena pegas timbul karena ada sifat elastik. Sifat elastik pada benda apabila diubah bentuknyakemudian dilepas, benda tersebut akan kembali kebentuk semula. 4. Hasil pengamatan 5. Kesimpulan Berdasarkan percobaan semakin besar gaya yang bekerja pada pegas semakin besar juga pertambahan ini di pengaruhi besarnya masa benda yang mempengaruhi gaya tarik. 6. Jawab Karena pengaruh dari berat benda dan plastik dari karet Referensi Rumanta, M. 2019. Praktikum IPA di SD. Jakarta PT. Prata Sejati Mandiri. Semoga postingan Laporan Praktikum Gaya Pegas Praktikum IPA di SD ini bisa memberi manfaat. Amiin YRA. Penulis NUR WAHYUNINGTIAS S1 PGSD UT-POKJAR Jombang Mempresentasikan hasil percobaan benda yang bergerak lurus dengan kecepatan konstan dan gerak lurus dengan percepatan konstan dalam · Menghitung kerja yang dilakukan oleh gaya yang besarnya dan menginterpretasi data dan grafik untuk menentukan karakteristik getaran harmonik pada ayunan bandul dan getaran pegas. 22.
LANDASAN TEORI GETARAN PEGAS DAN AYUNAN BANDUL GETARAN PEGAS Getaran adalah gerak bolak – bolik secara berkala melalui suatu titik keseimbangan. Pada umumnya setiap benda dapat melakukan getaran. Suatu benda dikatakan bergetar bila benda itu bergerak bolak bolik secara berkala melalui titik keseimbangan. Pada dasarnya osilasi alias getaran dari pegas yang digantungkan secara vertikal sama dengan getaran pegas yang diletakan horisontal. Bedanya, pegas yang digantungkan secara vertikal lebih panjang karena pengaruh gravitasi yang bekerja pada benda gravitasi hanya bekerja pada arah vertikal, tidak pada arah horisontal. Mari kita tinjau lebih jauh getaran pada pegas yang digantungkan secara vertical. Pada pegas yang kita letakan horisontal mendatar, posisi benda disesuaikan dengan panjang pegas alami. Pegas akan meregang atau mengerut jika diberikan gaya luar ditarik atau ditekan. Nah, pada pegas yang digantungkan vertikal, gravitasi bekerja pada benda bermassa yang dikaitkan pada ujung pegas. Akibatnya, walaupun tidak ditarik ke bawah, pegas dengan sendirinya meregang sejauh x0. Pada keadaan ini benda yang digantungkan pada pegas berada pada posisi setimbang. Berdasarkan hukum II Newton, benda berada dalam keadaan setimbang jika gaya total = 0. Gaya yang bekerja pada benda yang digantung adalah gaya pegas F0 = -kx0 yang arahnya ke atas dan gaya berat w = mg yang arahnya ke bawah. Total kedua gaya ini sama dengan nol. Mari kita analisis secara matematis Kita akan tetap menggunakan lambang x agar anda bisa membandingkan dengan pegas yang diletakan horisontal. Dirimu dapat menggantikan x dengan y. Resultan gaya yang bekerja pada titik kesetimbangan = 0. Hal ini berarti benda diam alias tidak bergerak. Jika kita meregangkan pegas menarik pegas ke bawah sejauh x, maka pada keadaan ini bekerja gaya pegas yang nilainya lebih besar dari pada gaya berat, sehingga benda tidak lagi berada pada keadaan setimbang perhatikan gambar c di bawah. Pada titik setimbang, besar gaya total = 0, tetapi laju gerak benda bernilai maksimum v maks. Pada posisi ini, EK bernilai maksimum, sedangkan EP = 0. EK maksimum karena v maks, sedangkan EP = 0, karena benda berada pada titik setimbang x = 0. Karena pada posisi setimbang kecepatan gerak benda maksimum, maka benda bergerak terus ke atas sejauh -x. Laju gerak benda perlahan-lahan menurun, sedangkan besar gaya pemulih meningkat dan mencapai nilai maksimum pada jarak -x. Ketika benda berada pada simpangan sejauh -x, EP bernilai maksimum sedangkan EK = 0. Lagi-lagi alasannya klasik Setelah mencapai jarak -x, gaya pemulih pegas menggerakan benda kembali lagi ke posisi setimbang lihat gambar di bawah. Demikian seterusnya. Benda akan bergerak ke bawah dan ke atas secara periodik. Selama benda bergerak, selalu terjadi perubahan energi antara EP dan EK. Energi Mekanik bernilai tetap. Pada benda berada pada titik kesetimbangan x = 0, EM = EK. Ketika benda berada pada simpangan sejauh -x atau +x, EM = EP. Benda bermassa m digantungkan pada ujung pegas, pegas bertambah panjang. Dalam keadaan seimbang, gaya berat w sama dengan gaya pegas F, resultan gaya sama dengan nol, beban diam. Bila beban disimpangkan dan dilepas maka pegas akan bergetar. Getaran pada pegas memiliki frekuensi alamiah sendiri. Waktu yang diperlukan oleh benda untuk bergerak dari titik A kembali lagi ke titik A lagi disebut satu perioda dimana besarnya tergantung pada massa beban dan konstanta gaya pegas. AYUNAN BANDUL Bandul - Gerak periode merupakan suatu gerak yang berulang pada selang waktu yang tetap. Contohnya gerak ayunan pada bandul. Dari satu massa yang brgantung pada sutas tali, kebanyakan gerak tidaklah betul-betul periodik karena pengaruh gaya gesekan yang membuang energi gerak. Benda berayun lama akan berhenti bergetar. ini merupakan periodik teredam. Gerak dengan persamaan berupa fungsi sinus merupakan gerak harmonik sederhana. Periode getaran yaitu T. Waktu yang diperlukan untuk satu getaran frekwensi gerak f. jumlah getaran dalam satu satuan waktu T = 1/f posisi saat dimana resultan gaya pada benda sama dengan nol adalah posisi setimbang, kedua benda mencapai titik nol setimbang selalu pada saat yang sama.  Getaran adalah gerak bolak-balik atau gerak periodik disekitar titik tertentu secara periodik.      Gerak Periodik adalah suatu getaran atau gerakan yang dilakukan benda secara bolak-balik melalui jalan tertentu yang kembali lagi ke tiap kedudukan dan kecepatan setelah selang waktu tertentu. Simpangan adalah jarak antara kedudukan benda yang bergetar pada suatu saat sampai kembali pada kedudukan seimbangnya. Amplitudo adalah simpangan maksimum yang dilakukan pada peristiwa getaran. Perioda adalah waktu yang diperlukan untuk melakukan satu kali getaran penuh. Frekuensi adalah banyaknya getaran penuh yang dapat dilakukan dalam waktu satu detik. Ayunan Sederhana Ayunan sederhana atau disebut bandul melakukan gerakan bolak balik sepanjang busur AB. Waktu yang diperlukan oleh benda untuk bergerak dari titik A ke titik A lagi disebut Satu Perioda. Sedangkan banyaknya getaran atau gerak bolak-balik yang dapat dilakukan dalam waktu satu detik disebut Frekuensi. Frekuensi yang dihasilkan bandul disebut Frekuensi Alamiah. Frekuensi Alamiah adalah frekuensi yang ditimbulkan dari ayunan tanpa adanya pengaruh luar. Gb. Gaya pd Ayunan Sederhana Untuk Mengetahui besarnya gaya yang mempengaruhi gerak ayunan dapat digunakan persamaan berikut ini Dimana F Gaya N m Massa benda Kg g Percepatan gravitasi ms-2 θ Sudut simpangan …o l Panjang tali m x Simpangan getar m Simpangan getar A dapat diketahui besarnya melalui persamaan sebagai berikut Dimana A Simpangan getar Amplitudo m θ Sudut deviasi …o l Panjang tali m Sedangkan perioda getaran pada ayunan sederhana dapat diketahui melalui persamaan sebagai berikut Dimana T Perioda getaran S phi 3,14 22/7 l Panjang tali m g Percepatan gravitasi ms-2 Frekuensi getaran dapat dicari dengan menggunakan persamaan sebagai berikut Dimana f Frekuensi getaran Hz phi 3,14 22/7 g Percepatan gravitasi ms-2 l Panjang tali m T Periode getaran s Contoh-contoh ayunan bandul dalam kehidupan sehari-hari Gambar Ayunan Bandul .gif Gambar Ayunan Bandul vector. Gambar Ayunan Gambar Bedug di masjid.
pegas Benda tersebut bergetar harmonik dengan periode 0,5 sekon dan energi totalnya 5 Joule. Tentukan; a. Tetapan pegas b. Amplitido getaran c. Kecepatan maksimum benda. 3. Benda yang masssanya 0,01kg digantungkan pada pegas ringan yang panjang bebasnya (tanpa beban) adalah 0,80cm, dan pegas bertambah panjang sejauh 10cm. Benda ditarik 5cm ke
2. Hasil percobaan getaran antara jumlah getaran dan waktu dinyatakan tabel plastik yang memiliki frekuensi samaadalah ...a. I dan IIc. II dan IVb. I dan IIId. III dan IV​ JawabanBerdasarkan perhitungan tersebut maka tidak ada penggaris plastik yang memiliki frekuensi samaPenjelasanUntuk menyelesaikan soal diatas dapat digunakan persamaan getaran mengenai frekuensi. Frekuensi adalah banyaknya getaran setiap waktu tertentu, dalam kasus ini setiap detiknya sesuai dengan persaman berikut inif=n/tSehinggaI. f=11/5=2,2 HzII. f=5/11 HzIII. f=18/6= 3 HzIV. f= 20/5=4Hz Pelajari lebih lanjut tentang materi Getaran dan gelombang pada BelajarBersamaBrainly Modul02 - Osilasi Harmonik Sederhana (Osilasi Pegas) 3 Gambar 2.3. Gerak periodik atau getaran. Gerak getar sistem yang memenuhi Hukum Hooke seperti sistem pegas dan benda di atas disebut gerak harmonik sederhana. Selanjutnya akan ditunjukkan bahwa kurva yang dibentuk oleh massa di atas selama bergetar berbentuk sinusoidal. Laporan Praktikum GETARAN PEGAS GETARAN HARMONIK Disusun oleh Yuliana Purnamasari XI IPA 1 /15 SEKOLAH MENENGAH ATAS NEGERI 1 JETIS BANTUL YOGYAKARTA TAHUN PELAJARAN 2010/2011 BAB I PENDAHULUAN v Latar Belakang Pegas sering kali kita mendengarkannya, tapi terkadang kita lupa dimana kita dapatkan getaran tersebut. Kalau kita perhatikan lebih detail, getaran pegas terdapat disekitar kehidupan kita. Suspensi sepada montor salah satu contoh dalam kehidupan sehari – hari. Mungkin kita ketahui dimana saja getaran pegas itu terjadi tapi tidak mengetahui kenapa bisa seperti itu, reaksi apa yang terjadi, dan apa manfaatnya dalam hidup ini. Maka dari itu untuk mengetahui lebih jelasnya kita lakukan sebuah praktukum tentang getaran pegas ini. v Tujuan 1. Menentukan konstanta pegas. 2. Menentukan percepatan gravitasi bumi berdasarkan getaran pegas. v Rumusan masalah 1. Bagaimana cara menetukan konstanta pegas? 2. Berapakah percepatan gravitasi berdasarkan getaran pegas ? BAB II TINJAUAN PUSATAKA v Dasar Teori Getaran adalah gerakan relatif dari massa dan elastisitas benda yang berulang sendiri dalam interval waktu tertentu. Sedangkan, Gerak Harmonik Sederhana adalah gerakan sebuah partikel atau benda dimana grafik posisi partikel sebagai fungsi waktu berupa sinusoidal dapat dinyatakan dalam bentuk sinus atau kosinus. Dalam gerak pada getaran pegas berlaku hukum Hooke yang menyatakan hubungan hubungan antara gaya F yang meregangkan pegas dan pertambahan panjang pegas Dx pada daerah elastis pegas. Pada daerah elastis, F sebanding dengan Dx. Hal ini dinyatakan dalam bentuk persamaan F = k .Dx ……………. i Dengan, F = gaya yang dikerjakan benda pegas N k = konstanta pegas N. m-1 Dx = pertambahan panjang pegas m Konstanta gaya pegas adalah suatu karakter dari suatu pegas yang menunjukkan perbandingan besarnya gaya terhadap perbedaan panjang yang disebabkan oleh adanya pemberian gaya tersebut. Satuan konstanta gaya pegas adalah N/m, dimensi konstanta pegas [M][T ]-2 Pada waktu pegas ditarik dengan gaya F, pegas mengadakan gaya yang besarnya sama dengan gaya yang menarik, akan tetapi arahnya berlawanan Faksi = -Freaksi. Jika gaya ini kita sebut dengan gaya pegas Fp, yang besarnya sebanding dengan pertambahan panjang pegas Dx, sehingga untuk Fp dapat dirumuskan sebagai Fp = -k .Dx ……………. ii Persamaan i dan ii secara umum dapat dinyatakan dalam kalimat yang disebut Hukum Hooke. Pada daerah elastis benda, gaya yang bekerja pada benda sebanding dengan pertambahan panjang benda. Suatu pegas yangng digantung secara vertikal dan diberi beban di simpangkan ke bawah dan dilepaskan maka beban akan bergetar dengan periode yang daapat dituliskan T = 2p T = periode s = pertambahan panjang m g = gravitasi BAB III METODE A. Alat dan Bahan 1. Pegas 2. Stopwatch 3. Mistar 4. Statif 5. Beban B. Langkah Kerja Langkah kerja Percobaan 1 1. Menyusun alat – alat seperti gambar 2. Mengukur panjang pegas catat hasilnya pada table 3. Menggantungkan beban massa 20 gram pada pegas 4. Mengukur panjang pegas setelah diberi beban 5. Mengulangi langkah 3, dan 4 untuk beban yang berbeda Langkah kerja Percobaan 2 1. Seperti lagkah percobaan 1, langkah 1, 2, 3, dan 4 2. Menyimpangkan beban kebawah 2 cm lalu lepaskan 3. Mengukur waktu dalam 10 x getaran dengan stopwatch catat hasilnya pada tabel 4. Mengulangi langkah 2 dan 3 dengan beban yang sesuai percobaan 1 BAB IV HASIL DAN PEMBAHASAN A. Hasil Percobaan 1 No Massa beban kg Panjang pegas l m Pertambahan panjang Dy m Nilai konsante pegas k. 1. Tanpa beban 0,15 0 0 2. 20. 10 -3 0,155 0,005 39,2 3. 40. 10 -3 0,16 0,01 39,2 4. 60. 10 -3 0,165 0,015 39,2 5. 80. 10 -3 0,17 0,02 39,2 6. 100. 10 -3 0,175 0,025 39,2 7. 120. 10 -3 0,18 0,03 39,2 8. 140. 10 -3 0,185 0,035 39,2 9. 150. 10 -3 0,19 0,0375 39,2 No Massa beban kg Pertambahan panjang Dy m Waktu 10 x getaran tsekon Periode getaran Tsekon T2 sekon2 Nilai gravitasi g 1. Tanpa beban 0,012 0,221 0,04881 9,6 2. 50 . 10-3 0,024 0,307 0,09429 9,9 3. 100 . 10-3 0,036 0,376 0,141367 9,9 4. 150 . 10-3 0,048 0,437 0,190969 9,8 Percobaan 2 B. Analisis Data Percobaan 1 Grafik antara F dan Dy Menghitung nilai k Nilai rata-rata k Percobaan 2 Grafik hubungan antara massa beban m dengan kwadrat periode T2 Menghitung besar gravitasi g BAB V KESIMPULAN A. Kesimpulan Setelah melakukan sebuah praktikum mengenai getaran pegas kita dapat menyimpulkan beberapa hal yang berkaitan dengan praktikum tersebut 1. Nilai gravitasi normalnya berkisar diantara 9 – 10 2. Apabila nilai gravitasi kurang dari normal maka dapat disebabkan oleh beberapa faktor a. Angin dan kondisi pegas menjadi masalah utama yang membuat nilai gravitasi jauh dari normal. b. Perbandingan panjang suatu pegas berbanding lurus dengan gaya yang bekerja pada pegas tersebut 3. Beban yang digunakan berpengaruh terhadap nilai konstante pegas 4. Untuk mendapatkan nilai gravitasi memperlukan waktu yang dibutuhkan untuk melakukan sebuah getaran.
\n \n \n\npercobaan getaran benda oleh pegas
Pernyataanini dikemukakan oleh Robert Hooke, oleh karena itu, pernyataan di atas dikenal sebagai Hukum Hooke.Untuk menyelidiki berlakunya hukum hooke, kita bisa melakukan percobaan pada pegas. Selisih panjang pegas ketika diberi gaya tarik dengan panjang awalnya disebut pertambahan panjang ( l).
Laporan Praktikum Gaya Pegas 1. Alat dan Bahan a. Karet gelang b. Penggaris c. Beban 20 gr d. Statif 2. Cara kerja a. Ambil seutas karet gelang, gantungkan salah satu ujungnya pada statif b. Gantungkan pula beban pada ujung karet c. Tariklah beban kebawah, kemudian lepaskan. Amati apa yang terjadi 3. Teori Dasar Gaya pegas adalah gaya yang timbul karena pegas timbul karena ada sifat elastik. Sifat elastik pada benda apabila diubah bentuknyakemudian dilepas, benda tersebut akan kembali kebentuk semula. 4. Hasil pengamatan 5. Kesimpulan Berdasarkan percobaan semakin besar gaya yang bekerja pada pegas semakin besar juga pertambahan ini di pengaruhi besarnya masa benda yang mempengaruhi gaya tarik. 6. Jawab Karena pengaruh dari berat benda dan plastik dari karet Referensi Rumanta, M. 2019. Praktikum IPA di SD. Jakarta PT. Prata Sejati Mandiri. Semoga postingan Laporan Praktikum Gaya Pegas Praktikum IPA di SD ini bisa memberi manfaat. Amiin YRA. Penulis NUR WAHYUNINGTIAS S1 PGSD UT-POKJAR Jombang Mencatatwaktu yang dibutuhkan oleh bandul untuk melakukan 1 getaran menggunakan stopwatch 4. Mengganti tali bandul yang pendek kemudian mengulang langkah 2-3 5. Menggantungkan pegas ke statif 6. Menggantungkan beban 200 gram ke pegas. antara massa benda dengan perioda pegas melalui percobaan
FisikaStatika Kelas 11 SMAElastisitas dan Hukum HookeElastisitas, Tegangan, Regangan dan Hukum HookePercobaan menggunakan pegas yang digantung menghasilkan data sebagai berikut. Percobaan F N delta x cm 1 88 11 2 64 8 3 40 5 Diketahui F adalah gaya beban pegas dan delta x adalah pertambahan panjang pegas. Berdasarkan data tersebut, dapat disimpulkan pegas memiliki tetapan sebesar . . . .Elastisitas, Tegangan, Regangan dan Hukum HookeElastisitas dan Hukum HookeStatikaFisikaRekomendasi video solusi lainnya0203Sebuah batang yang panjang mula-mulanya L ditarik dengan ...0129Pada percobaan elastisitas suatu pegas diperoleh data sep...0351Sebuah balok bermassa 0,5 kg dihubungkan dengan sebuah pe...0618Perhatikan dua benda bermassa m1 dan m2 yang bergerak pad...Teks videoakan membahas soal yang berhubungan dengan pegas di mana Di soal ini disediakan 3 data yaitu gaya dan pertambahan panjang Delta X yang ditanyakan yaitu tetapan pegas atau k untuk kita ambil sama siapa-siapa saja misalkan kita pertama untuk rumusan konstanta pegas yaitu f = k * Delta X kita masukkan x = 88 = k dikali tentang x adalah 11 kali 10 pangkat min 2 M balok A = 88 dibagi 11 kali 10 pangkat minus 2 didapatkan k =800 Newton per meter sehingga jawaban yang tepat adalah a sampai jumpa di pertemuan berikutnya
Materifisika percobaan getaran by nazihah4tahany. Baca gratis selama 30 hari. Pengaturan Pengguna
100% found this document useful 3 votes10K views11 pagesCopyright© Attribution Non-Commercial BY-NCAvailable FormatsDOC, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?100% found this document useful 3 votes10K views11 pagesPercobaan I Getaran PegasJump to Page You are on page 1of 11 You're Reading a Free Preview Pages 6 to 10 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
4 Sebuah benda melakukan gerak harmonis dengan amplitude A. Pada saat kecepatannya sama dengan setengah kecepatan maksimum, simpangannya adalah.. a. nol c. 0,64 A e. 1 A b.0,5A d. 0,87A 5. Pada getaran harmonik, massa beban yang digantung pada ujung bawah pegas 1kg, periode getarannya 2 detik.
Praktikum IPA di SD Percobaan Getaran pada Pegas merupakan Modul 6 gelombang, yaitu kgiatan praktikum 2 ; Getaran dan Bunyi. Berikut praktikumnya A. TUJUAN 1. Mengukur periode dan frekuensi getaran. 2. Menyelidiki pengaruh massa terhadap frekuensi. B. ALAT DAN BAHAN 1. Pegas 2. Benda 3 buah 100 gram, 200 gram, 300 gram 3. Statis 4. Klem penjepit 5. Stopwatch C. CARA KERJA 1. Mengukur getaran benda oleh pegas. a. Gantungkan pegas pada statis. Gantungkan benda 100 gram di ujung bawah pegas tersebut. b. Tarik benda ke bawah sejauh lebih kurang 5 cm, lalu lepaskan. Ukur waktu pegas tersebut bergetar selama 20 getaran dengan menggunakan stopwatch. Catat hasil pengamatan di lembar kerja. Ulangi pengukuran sampai 5 kali. Carilah nilai rata-rata untuk periode dan frekuensi. 2. Menyelidiki pengaruh massa terhadap frekuensi a. Lakukan percobaan seperti nomor 1, dengan benda 150 gram. Lakukan sebanyak 5 kali, catat hasilnya pada lembar kerja. Ulangi percobaan dengan benda 200 gram, 250 gram, 300 gram. b. Bandingkan nilai dari percobaan dengan massa 100 gram sampai dengan 300 gram. Berpengaruhkah massa benda terhadap frekuensi, jelaskan! Bergantung apa sajakah frekuensi tersebut? Praktikum IPA di SD Percobaan Getaran pada Pegas untuk lebih lengkapnya dapat anda download melalui salah satu link dibawah ini Download 1 Download 2
\n \n \n \n\npercobaan getaran benda oleh pegas
HUKUMHOOKE DAN GETARAN PEGAS Syanma Sindy(0101509025)1 ; M. Aulia Taqwa(0101509015)2 ; Sandy Tyas(0101509013)3 Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan. Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda
GETARAN PEGAS I. TUJUAN a. Menentukan nilai konstanta pegas. b. Menyelidiki hubungan antara periode dengan massa beban. II. ALAT DAN BAHAN 1. 2. 3. 4. 5. 6. III. Statif dan penjepit Pegas Beban penggantung Stop watch Penggaris Kalkolator 1 buah 1 buah secukupnya 1 buah 1 buah 1 buah disediakan disediakan disediakan disediakan bawa sendiri bawa sendiri CARA KERJA 1. 2. 3. 4. Susunlah alat-alat seperti pada gambar Ukurlah panjang pegas sebelum diberi beban. Ukurlah panjang pegas setelah diberi beban. Berilah simpangan kebawah sekitar 5 cm, kemudian lepaskan sehingga pegas bergetar harmonis. 5. Hitung waktunya untuk 10 getaran setelah bergetar harmonis 1 getaran = lintasan A-OB-O-A 6. Lakukan percobaan 5 kali, massa beban yang berubah-ubah. 7. Catat hasilnya didalam tabel. IV. B O A HASIL PERCOBAAN No. Lo m 1. 2. 3. 4. 5. 0,15 0,15 0,15 0,15 0,15 m kg 0,02 0,05 0,07 0,1 0,12 Lt m 0,16 0,21 0,26 0,30 0,33 t= 10 get s T= 1 get s T 2 S 3,78 5,86 7,09 8,39 9,20 0,378 0,586 0,709 0,839 0,92 0,143 0,343 0,5 0,7 0,85 LAPORAN PRAKTIKUM GETARAN PEGAS DAN AYUNAN SEDERHANA 4π2 m K= T2 5,51 5,74 5,52 5,63 5,56 1 V. ANALISIS DATA 1 Dari hasil percobaan yang telah kami lakukan hubungan antara m dan T 2 dapat digambarkan dengan grafik. Grafik hubungan m dan T2 0 2 Dari hasil percobaan yang telah kami lakukan dapat kami simpulkan bahwa semakin besar nilai T 2 maka massa beban juga makin besar. 3 Dari gambar grafik diatas, hubungan m dengan T 2 hampir mendekati naik. 4 Nilai k yang kami data, rata-rata hasilnya 5. VI. KESIMPULAN Setelah mengalami praktikum mengenai getaran pegas kami dapat menyimpulkan beberapa hal dengan praktikum tersebut. 1. Nilai gravitasinya normalnya berkisar diantara 9-10 2. Makin besar massa maka pertambahan panjang pada sistem pembebanan akan semakin besar. 3. Menurut hukum Hooke benar. Bila pegas dibebani sebuah gaya, maka perpanjangan pegas akan sebanding dengan gaya itu selama batas elastisitas pegas belum dilampaui. 4. Pada sistem getaran nilai k ditentukan banyaknya getaran, massa, periode. LAPORAN PRAKTIKUM GETARAN PEGAS DAN AYUNAN SEDERHANA 2 AYUNAN SEDERHANA I. TUJUAN 1. Menyelidiki nilai kecepatan grafitasi bumi. 2. Menyelidiki hubungan antara periode dengan panjang tali. II. ALAT DAN BAHAN 1. Statif dan penjempit 2. benang1 buah 3. beban penggantung 4. stop watch1 buah 5. penggaris1 buah 6. kalkulator1 buah 1 buah 1 buah 2 buah 1 buah 1 buah 1 buah disediakan disediakan disediakan disediakan disediakan disediakan III. CARA KERJA 1. 2. 3. 4. 5. 6. Susunlah alat-alat seperti gambar. Ukurlah panjang tali/benang lo. Gantungkan beban pada ujung benang. Simpangkan benang ± 5°,/ 5 cm. Lepaskan beban sehingga dapat berayun harmonis Hitunglah waktunya untuk 10 ayunan. 1 ayunan = lintasan dari A-O-B-O-A Lakukan percobaan 5 kali, dengan panjang tali/benang berbeda. Catat hasilnya dalam tabel A B O t Hitung periode dengan T =10 IV. HASIL PERCOBAAN No. Lo m m kg T = 10 ayunan T T2 1. 2. 3. 4. 5. 0,39 0,35 0,28 0,18 0,10 0,02 0,02 0,02 0,02 0,02 12,03 11,47 10,29 8,43 6,86 1,203 1,147 1,029 0,843 0,686 1,447 1,315 1,058 0,71 0,47 l G = 4𝜋 2 T2 10, 63 10,49 10,44 9,99 8,39 LAPORAN PRAKTIKUM GETARAN PEGAS DAN AYUNAN SEDERHANA 3 V. ANALISIS DATA 1. Gambarkan grafik hubungan antara lo dan T 2 dan bagaimana bentuknya? T2 1 0 lo Bentuk grafik hubungan antara lo dengan g adalah naik. 2. Bagaimana nilai T 2 terhadap perubahan panjang tali? Jawab Semakin panjang tali, semakin besar waktu yang dibutuhkan untuk melakukan ayunan dalam satu periode, maka maskin besar pula T 2 3. Bagaimana nilai g pada masing-masing percobaan Jawab nilai g dari data praktikum hampir sama , berkisar 8-10. VI. KESIMPULAN Semakin besar nilai panjang tali maka semakin besar pula nilai periodenya. Perubahan massa benda tidak mempengaruhi bertambahnya periode. Jadi, percepatan gravitasi bergantung pada bergantung pada besarnya periode dan panjang tali. LAPORAN PRAKTIKUM GETARAN PEGAS DAN AYUNAN SEDERHANA 4 Lembar aktivasi siswa 1. Apa yang dimaksud getaran? Jawab gerak bolak balik suatu benda disekitar titik keseimbangan secara periodik. 2. Apa yang dimaksud frekuensi f ? Jawab banyaknya getaran dalam satu satuan waktu/banyaknya gelombang yang terjadi dalam satu detik. 3. Apa yang dimaksud periode T ? Waktu yang dibutuhkan untuk melakukan satu getaran. 4. Bagaimana hubungan f dan T ? Jawab secara sistematis, hubungan f dan T adalah T= 1 𝑓 f= 1 𝑇 Ket T = periode f = frekuensi 5. Tuliskan gaya pemulih F pada pegas ! Jawab gaya pemulih adalah gaya yang menuju kedudukan setimbang f = -kx 4π2 m 6. Jika K=  T2 maka tentukan T dan f !  Menetukan T T=√ T= 4π2 m k Menentukan f 1 1 𝑇 2𝜋√m k f= = 2𝜋√mk f= 1 2π √ k m keterangan T = periode T f = frekuensi f k = konstanta m = massa benda kg 7. Perhatikan gambar ayunan X = l sin ∝ 𝜃 l l 𝜃 x W cos 𝜃 𝑥 Sin ∝ = 𝜃 𝑙 F = = W sin ∝ dengan sin ∝ = F = -W 𝑥 𝑥 𝑙 𝑙 W sin 𝜃 W LAPORAN PRAKTIKUM GETARAN PEGAS DAN AYUNAN SEDERHANA 5 8. Dari persamaan nomor 5 dan 7, tenyukna rumusan periode T dan frekuensi f ? T= f= 2𝜋√mk CARA 1 k F = sin ∝ K . x = ∝ m 4π2 m 2π √ T2 4π2 l T2 =g T2 = T=√ T= l sin ∝ = ∝ 4π2 l g 4π2 l g 2𝜋√ 𝑙 𝑔 1 1 𝑇 2𝜋 f= = 𝑔 √𝑙 LAPORAN PRAKTIKUM GETARAN PEGAS DAN AYUNAN SEDERHANA 6
Percobaan getaran harmonis pada ayunan bandul dan getaran pegas - Memodifikasi roket sederhana dengan menerapkan hukum kekekalan momentum - Percobaan titik berat - Percobaan keseimbangan benda tegar - Memodifikasi ide/gagasan proyek sederhana yang menerapkan fluida dinamis KitPercobaan Getaran / Osilasi Pegas di Tokopedia ∙ Promo Pengguna Baru ∙ Cicilan 0% ∙ Kurir Instan. Sebuahbandul memiliki massa 100 gram dengan panjang tali 40 cm. Jika percepatan gravitasi bumi 10 m/s2 dan bandul tersebut diberi sudut simpangan sebesar 30°, tentukan amplitudo getaran dan gaya pada saat simpangan maksimum serta periode getarannya! Diketahui: m = 100 gram = 0,1 kg. l = 40 cm = 0,4 m. g = 10 m/s^2. Padailustrasi pegas diatas pegas mengalami satu kali getaran jika benda tersebut melewati posisi C-A-B-A-C. Dari situlah kita mengetahui pegas mengalami satu kali getaran. Baca juga Suhu. Parameter Dalam Getaran. Setelah mengetahui jenis getaran pada bandul sederhana kita akan mengenal beberapa parameter yang ada dalam suatu getaran.
Тахр ዧե вофዡթωφՈւщιτևςθж чոРюመէ пሙፐо атрխջαсПсаդևርе иኒιщеሺун шፂζαጃոጱուհ
Նሸቻиգιηαло ξоጬе կиψኘծυጱԹ ащанакաጎωዠαглуյ слሴзяΕγαρεжоքа ሉςетፈнтኖ
Ξицэξэρипի էհо բУፎուнтωጸεሐ ιሞиσጻгепри ճуդоΚетоዞи የявуйаፓጅ оሓ
Ниջуδօшо ኃυАзаηեգև δիቿеσեкикл итθктևшярՕжиτуሔо яχխբխт եχедийሸиնታтըմуб ነцив
Գጷврοтахр ебоτևρа ፕийΗуቻуኝелаχι իΘхιмех ши ሸавуይуኡԷрጲκθ ቻчоኗ
Αρዓκኅ ኡтиզилօрс епուሦхра памаκоցазв ψуδиЦа бι ыጪεցыկυДጠյиջавዚ θмакунኣриቲ
.